当前位置: > 在底面是正方形的四棱锥P-ABCD中,平面PCD垂直平面ABCD.PC=PD=CD=2...
题目
在底面是正方形的四棱锥P-ABCD中,平面PCD垂直平面ABCD.PC=PD=CD=2
一,求证PD垂直BC
二,求证二面角B-PD-C的大小

提问时间:2020-11-17

答案
1、 因为平面PCD垂直于平面ABCD
且底面是正方形则BC垂直于CD即垂直于棱
因此BC垂直于平面PCD 即BC垂直于PD
2、 PB在平面ABCD内的射影为BD PC在平面ABCD内的射影是CD
因此角BDC为二面角的平面角=45度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.