当前位置: > 设bn=3/(anan+1),an=6n-5,tn是数列{bn}的前n项和,求使得Tn...
题目
设bn=3/(anan+1),an=6n-5,tn是数列{bn}的前n项和,求使得Tn

提问时间:2020-09-26

答案
Tn
=b1+b2+...+bn
=(3/a1a2)+.+3/[ana(n+1)]
=3[1/a1a2+1/a2a3+...+1/ana(n+1)]
=3[1/(1*7)+1/(7*13)+...+1/(6n-5)(6n+1)]
=3{(1/6)(1-1/7)+(1/6)(1/7-1/13)+...+(1/6)[(1/6n-5)-1/(6n+1)]}
=(1/2)*[1-1/7+1/7-1/13+.+1/(6n-5)+1/(6n+1)]
=(1/2)*[1-1/(6n+1)]
因为n属于N*
所以1/(6n+1)>0
则:
Tn=(1/2)-(1/2)[1/(6n+1)]=10
所以
最小正整数m为10
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.