题目
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b都有f(a+b)=f(a)*f(b) (1)求证f(0)=1
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b都有f(a+b)=f(a)*f(b)
(1)求证f(0)=1 (2)求证对任意的x属于R 恒有f(x)>0 (3)求证f(x)是R上的增函数 4)若f(x)*f(2x-x2 )>1 求x的取值范围
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b都有f(a+b)=f(a)*f(b)
(1)求证f(0)=1 (2)求证对任意的x属于R 恒有f(x)>0 (3)求证f(x)是R上的增函数 4)若f(x)*f(2x-x2 )>1 求x的取值范围
提问时间:2020-11-17
答案
1.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1.
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0.因为当式中a=x,b=-x,得:f(0)=f(x)*f(-x),因为f(0)不等于0,所以对于任意的f(x)和f(-x)都有f(x)不等于0,所以f(x)>0.
3.设x1>x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1>x2,所以x1-x2>0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x1)>f(x2),所以f(x)是R上的增函数.
4.f(x)*f(2x-x平方)=f(3x-x^2)>1,因为x>0时,f(x)>1,f(x)又为R上的增函数,所以,只有当3x-x^2>0时,才会有f(x)*f(2x-x平方)>1,此时,0
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0.因为当式中a=x,b=-x,得:f(0)=f(x)*f(-x),因为f(0)不等于0,所以对于任意的f(x)和f(-x)都有f(x)不等于0,所以f(x)>0.
3.设x1>x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1>x2,所以x1-x2>0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x1)>f(x2),所以f(x)是R上的增函数.
4.f(x)*f(2x-x平方)=f(3x-x^2)>1,因为x>0时,f(x)>1,f(x)又为R上的增函数,所以,只有当3x-x^2>0时,才会有f(x)*f(2x-x平方)>1,此时,0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1已知3个连续偶数和为2010,x这3个偶数最小是多少?
- 2正方体互相平行的边有几组
- 3SO32-检验方法是什么
- 4x²-2ax+3>0是真命题 ,则实数a的取范围
- 5一个长8.宽6分米,2分米的长方体与一个圆锥的体积相等.圆锥的高是12分米,圆锥的
- 6The best medicine for you right now would be a good rest.翻译
- 7a:b=5:12且3a-b=6,则a=( ),b=( )
- 8一批化肥七天运完.平均每天运这批化肥的几分之几?5天呢?
- 9小明每隔25天理发一次,小强每隔40天理发一次,2009年10月1日建国60周年之日,两人同时去理发.他们下次同时
- 10检测是否有语法错误there are many the most beautiful people,such as the most beautiful mather,
热门考点
- 11.在一块直径为40米的圆形操场周围栽树,每隔6.28米栽一棵.一共可栽多少棵?
- 2y=(1+3cosx)∕(2+cosx)的最大最小值
- 3经典英语诗歌,包括诗歌表达的感情
- 4Write a letter for the following situation.
- 5f(x)=x2+bx+c,f(1)=0,对称轴x=4,求f(x)的解析式
- 6是不是固体的密度都比液体的密度大
- 7other的用法
- 8如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=_.
- 9已知tanα=2,求cos(α-7π/2)+2sin(π-3α)/csc(π+α)+sec(π/2+α)的值
- 10我现在感觉好多了 用英语怎么说