当前位置: > 直线过点P(3/4,2)且与x轴,y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线满足下列条件:三角形AOB的周长为12?...
题目
直线过点P(3/4,2)且与x轴,y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线满足下列条件:三角形AOB的周长为12?

提问时间:2020-11-17

答案
设过点P(3/4,2)的直线方程为:y-2=k(x-3/4)
易证三角形最短周长出现在k=-1的时候,
这时,三角形两直角边长都是11/4,斜边长是(11/4)(√2)
三角形周长为
11/4+11/4+(11/4)(√2) =11/2+(11/4)(√2)
因为
12-[11/2+(11/4)(√2)]=13/2-(11√2)/4
=(26-11√2)/4>0
即三角形AOB的最小周长小于12,
所以这样的直线存在.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.