当前位置: > 已知函数f(x)=x2-2ax+3.若函数f(x)的单调减区间为(-无穷大,2),求函数f(x)在区间(3,5]上的最大值...
题目
已知函数f(x)=x2-2ax+3.若函数f(x)的单调减区间为(-无穷大,2),求函数f(x)在区间(3,5]上的最大值

提问时间:2020-11-16

答案
首先这是一个二次函数,抛物线,开口向上,由于单调减区间为(-无穷大,2)
于是可以知道,这个函数的对称轴就是x=2,那么可以得到,
f(x)=(x-a)^2 -a^2 +3 那么对称轴就是x=2=a 所以a=2
于是f(x)=x2-4x+3
由于它在(3,5]上,为单调递增,那么,f(5)即为最大值,为8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.