题目
如图1,在平面直角坐标系中,直线AB交x轴于A点,交y轴于B点,点C是直线AB上一动点.
(1)若∠OAB比∠OBA大20°,OC⊥AB,求∠AOC的度数;
(2)如图2,AM平分∠BAO,BM平分∠OBN,当A点在x轴负半轴上运动时,∠AMB的值是否发生变化?若不变求出∠AMB的度数;若变化请说明理由;
(3)如图3,若∠OAB=45°,且∠OPA=∠BPD,∠BDP=∠ODF,则下列两个结论:
①DF∥AB,②DF⊥OP,其中只有一个结论是正确的,请你指出正确的结论,并说明理由.
(1)若∠OAB比∠OBA大20°,OC⊥AB,求∠AOC的度数;
(2)如图2,AM平分∠BAO,BM平分∠OBN,当A点在x轴负半轴上运动时,∠AMB的值是否发生变化?若不变求出∠AMB的度数;若变化请说明理由;
(3)如图3,若∠OAB=45°,且∠OPA=∠BPD,∠BDP=∠ODF,则下列两个结论:
①DF∥AB,②DF⊥OP,其中只有一个结论是正确的,请你指出正确的结论,并说明理由.
提问时间:2020-11-16
答案
(1)∵∠AOB=90°,∠OAB比∠OBA大20°,
∴
,
解得:∠OBA=35°,
∵OC⊥AB,
∴∠OCA=∠AOB=90°,
∴∠AOC=∠OBA=35°;
(2)∠AMB的值不发生变化;
∵∠BAM=
∠BAO,∠ABM=∠ABO+∠OBM=∠ABO+
(∠AOB+∠BAO)=∠ABO+
(90°+∠BAO),
∴∠AMB=180°-(∠BAM+∠ABM)=180°-[
∠BAO+∠ABO+
(90°+∠BAO)]=45°;
(3)②DF⊥OP正确;
∵∠OAB=45°,∠AOB=90°,
∴∠OAB=∠OBA=45°,
∵∠OPA=∠BPD,
∴∠PDB=∠PDB,
∵∠BDP=∠ODF,
∴∠AOP=∠ODF,
∵∠AOP+∠POD=90°,
∴∠ODF+∠POD=90°,
∴∠OED=90°,
∴DF⊥OP.
∴
|
解得:∠OBA=35°,
∵OC⊥AB,
∴∠OCA=∠AOB=90°,
∴∠AOC=∠OBA=35°;
(2)∠AMB的值不发生变化;
∵∠BAM=
1 |
2 |
1 |
2 |
1 |
2 |
∴∠AMB=180°-(∠BAM+∠ABM)=180°-[
1 |
2 |
1 |
2 |
(3)②DF⊥OP正确;
∵∠OAB=45°,∠AOB=90°,
∴∠OAB=∠OBA=45°,
∵∠OPA=∠BPD,
∴∠PDB=∠PDB,
∵∠BDP=∠ODF,
∴∠AOP=∠ODF,
∵∠AOP+∠POD=90°,
∴∠ODF+∠POD=90°,
∴∠OED=90°,
∴DF⊥OP.
(1)根据已知得出
,解得:∠OBA=35°,然后根据同角的余角相等即可求得;
(2)由于∠BAM=
∠BAO,∠ABM=∠ABO+
(90°+∠BAO),根据三角形的内角和定理即可证得∠AMB=45°;
(3)根据三角形的内角和定理求得∠PDB=∠PDB,进而求得∠AOP=∠ODF,因为∠AOP+∠POD=90°,求得∠ODF+∠POD=90°,即可求得.
|
(2)由于∠BAM=
1 |
2 |
1 |
2 |
(3)根据三角形的内角和定理求得∠PDB=∠PDB,进而求得∠AOP=∠ODF,因为∠AOP+∠POD=90°,求得∠ODF+∠POD=90°,即可求得.
三角形内角和定理;坐标与图形性质;三角形的外角性质.
本题考查了三角形的内角和定理、三角形外角的性质、互为余角的性质、坐标和图形的性质等,熟练掌握性质定理是解题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1There are l( ) of flowers in the garden.填空题顺便翻译一下
- 2△ABC,∠B=30°,AB=2,BC=1,则△ABC的面积?
- 3关于重力势能
- 4第八 英文怎么写
- 5“用光具盘研究光的反射现象”的实验中,各小组同学都完成了各自的实验报告.以下是从不同实验报告中摘录出来的四句话: ①反射角等于入射角; ②反射光线与入射光线分别位于法线
- 6分组分解法例题p-q+k(p-q)
- 7天净沙秋思中夕阳西下在诗中的作用是什么和什么
- 8contribute to 可以表示 devote to 的意思么
- 9春日这首诗描写了什么内容表达了作者怎样的情感
- 10You should look at the blackboard and I___to the teacher carefully
热门考点