当前位置: > 求 ∫(lnx-1)/(lnx)^2dx 的积分...
题目
求 ∫(lnx-1)/(lnx)^2dx 的积分

提问时间:2020-11-16

答案
做变量代换,设t=lnx,则dx=e^tdt
原式=∫e^t (t-1)/t^2dt=∫e^t 1/tdt-∫e^t 1/(t^2)dt
对第一部分用分部积分得∫e^t 1/tdt=e^t/t+∫e^t 1/(t^2)dt
所以原式=e^t/t,再把t=lnx带回就可以了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.