当前位置: > 证明:m>n>0时,(1+m)^n < (1+n)^m...
题目
证明:m>n>0时,(1+m)^n < (1+n)^m

提问时间:2020-11-15

答案
楼上的说得比较高深,构造函数也比较复杂,我来说明一个思路,这类带有指数的又是正数比较时候,加上对数ln,将此作变化,[ln(1+m)]/m<[ln(1+n)]/n,这样把不同的未知数分离到两边后就好构造函数得多.【ln(1+x)】/x即可再求导求证单调性.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.