当前位置: > 数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式...
题目
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式

提问时间:2020-11-15

答案
证明:a(n+2)=[an+a(n+1)]/2
a(n+2)-a(n+1)=-[a(n+1)-an]/2,即
b(n+1)=-bn/2,
b(n+1)/bn=-1/2,b1=a2-a1=1-0=1
所以bn是以q=-1/2等比数列
bn=b1q^(n-1)=(-1/2)^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.