当前位置: > 如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB....
题目
如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.

提问时间:2020-11-14

答案
证明:延长CF、BA交于点M,
∵点E、F分别是正方形ABCD的边CD和AD的中点,
∴BC=CD,∠BCE=∠CDF,CE=DF,
∴△BCE≌△CDF,
∴∠CBE=∠DCF.
∵∠DCF+∠BCP=90°,
∴∠CBE+∠BCP=90°,
∴∠BPM=∠CBE+∠BCP=90°.
又∵FD=FA,∠CDF=∠MAF,∠CFD=∠MFA,
∴△CDF≌△AMF,
∴CD=AM.
∵CD=AB,∴AB=AM.
∴PA是直角△BPM斜边BM上的中线,
∴AP=
1
2
BM,
即AP=AB.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.