当前位置: > 已知非负实数x,y,z,w满足x2+y2+z2+w2+x+2y+3z+4w=17/2,那么x+y+z+w的最大值与最小值分别为( )....
题目
已知非负实数x,y,z,w满足x2+y2+z2+w2+x+2y+3z+4w=17/2,那么x+y+z+w的最大值与最小值分别为( ).

提问时间:2020-11-14

答案
f(x,y,z,w)=x+y+z+w+a(x²+y²+z²+w²+x+2y+3z+4w-17/2)
f`x=1+a(2x+1)=0
f`y=1+a(2y+2)=0
f`z=1+a(2z+3)=0
f`w=1+a(2w+4)=0
-1/(2x+1)=-1/(2y+2)=-1/(2z+3)=-1/(2w+4)
y=(2x-1)/2
z=x-1
w=(2x-3)/2
x2+y2+z2+w2+x+2y+3z+4w=17/2
x²+(2x-1)²/4+(x-1)²+(2x-3)²/4+x+2x-1+3(x-1)+2(2x-3)=17/2
解出x即可,应该是两个值
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.