题目
如图所示在三角形ABC中D为AC上一点CD=2AD角BAC=45角BDC=60CE垂直BD,E为垂足连接AE (
如图所示在三角形ABC中D为AC上一点CD=2AD角BAC=45角BDC=60CE垂直BD,E为垂足连接AE
(1)写出相等线段,并证明其中一条
(2)图中有无相似三角形?若有 请写一对 若没有 请说明理由
如图所示在三角形ABC中D为AC上一点CD=2AD角BAC=45角BDC=60CE垂直BD,E为垂足连接AE
(1)写出相等线段,并证明其中一条
(2)图中有无相似三角形?若有 请写一对 若没有 请说明理由
提问时间:2020-11-11
答案
第一个问题:
相等的线段有:①AD=ED;②AE=BE=CE.
一、证明:AD=ED.
∵CE⊥DE、∠CDE=60°,∴ED=CD/2,又CD=2AD,∴AD=ED.
二、证明:AE=CE.
∵AD=ED,∴∠EAC=∠DEA,又∠CDE=60°,
∴由三角形外角定理,有:∠EAC+∠DEA=∠CDE=60°,∴∠EAC=30°.
∵CE⊥DE、∠CDE=60°,∴∠ECA=30°.
由∠EAC=30°、∠ECA=30°,得:∠EAC=∠ECA,∴AE=CE.
三、证明:AE=BE.
∵∠BDC=60°、∠BAC=45°,∴由三角形外角定理,有:∠EBA+∠BAC=∠BDC,
∴∠EBA+45°=60°,∴∠EBA=15°.
又∠EAB=∠BAC-∠DAE=45°-30°=15°.
由∠EBA=15°、∠EAB=15°,得:∠EAB=∠EBA,∴AE=BE.
第二个问题:
图中有一对相似三角形,即:△ADE∽△AEC.
∵∠DAE=∠EAC、∠DEA=∠ECA=30°,∴△ADE∽△AEC.
相等的线段有:①AD=ED;②AE=BE=CE.
一、证明:AD=ED.
∵CE⊥DE、∠CDE=60°,∴ED=CD/2,又CD=2AD,∴AD=ED.
二、证明:AE=CE.
∵AD=ED,∴∠EAC=∠DEA,又∠CDE=60°,
∴由三角形外角定理,有:∠EAC+∠DEA=∠CDE=60°,∴∠EAC=30°.
∵CE⊥DE、∠CDE=60°,∴∠ECA=30°.
由∠EAC=30°、∠ECA=30°,得:∠EAC=∠ECA,∴AE=CE.
三、证明:AE=BE.
∵∠BDC=60°、∠BAC=45°,∴由三角形外角定理,有:∠EBA+∠BAC=∠BDC,
∴∠EBA+45°=60°,∴∠EBA=15°.
又∠EAB=∠BAC-∠DAE=45°-30°=15°.
由∠EBA=15°、∠EAB=15°,得:∠EAB=∠EBA,∴AE=BE.
第二个问题:
图中有一对相似三角形,即:△ADE∽△AEC.
∵∠DAE=∠EAC、∠DEA=∠ECA=30°,∴△ADE∽△AEC.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1( )把落叶当做( )
- 2翻译:The T-shirts for boys and girls in the store are _______ sale.
- 3香两长一短什么意思
- 4英语填空he____ ____ ____(能)speak english well at the age of 5
- 5log3 4 与log4 5 的大小
- 6小明、华、勇、小强的年龄正好是四个连续的自然数,四人年龄的乘积是5040,小勇最大,小勇几岁
- 7扇形的周长为C,半径为r,用C,r的代数式表示扇形的圆心角n=_____,若C=10,r=3,则圆心角=_____.(保留∏)
- 8如何用马克思基本理论解决务虚与务实的关系?
- 9自然数a除7余3,自然数b除7余4,a加b除以7余几?
- 106:9和6分之1:9分之1,0.3:0.2和15:10,3分之1:4分之1和0.8:0.6,7:20和2:7的比值组成比例,