当前位置: > a>0,b>0,ab不等于0,求证:|a^3+b^3-2ab根号(ab)|>|b*a^2+a*b^2-2ab根号(ab)|...
题目
a>0,b>0,ab不等于0,求证:|a^3+b^3-2ab根号(ab)|>|b*a^2+a*b^2-2ab根号(ab)|

提问时间:2020-11-10

答案
由均值不等式:a^3+b^3>=ab根号(ab,*a^2+a*b^2>=2ab根号(ab);原式等价于:a^3+b^3>=b*a^2+a*b^2,等价于(a-b)^2(a+b)>=0,显然成立.(原不等式中间应该是>=,否则条件应加上a≠b)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.