题目
如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.
提问时间:2020-11-09
答案
证明:过D点作DG∥AE交BC于G点,如图,
∴∠1=∠2,∠4=∠3,
∵AB=AC,
∴∠B=∠2,
∴∠B=∠1,
∴DB=DG,
而BD=CE,
∴DG=CE,
在△DFG和△EFC中
,
∴△DFG≌△EFC,
∴DF=EF.
∴∠1=∠2,∠4=∠3,
∵AB=AC,
∴∠B=∠2,
∴∠B=∠1,
∴DB=DG,
而BD=CE,
∴DG=CE,
在△DFG和△EFC中
|
∴△DFG≌△EFC,
∴DF=EF.
过D点作DG∥AE交BC于G点,由平行线的性质得∠1=∠2,∠4=∠3,再根据等腰三角形的性质可得∠B=∠2,则∠B=∠1,于是有DB=DG,根据全等三角形的判定易得△DFG≌△EFC,即可得到结论.
全等三角形的判定与性质;等腰三角形的性质.
本题考查了全等三角形的判定与性质:如果两个三角形中,有两组角对应相等,并且其中一组对应角所对的边相等,那么这两个三角形全等.也考查了等腰三角形的性质.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1for a while 和 after a while的同义词分别是什么
- 2family well
- 3含有中的四字词语 情()()中
- 4若a-b=2,a+c=6,则(2a+b+c)-2(a-b-c)=_.
- 5爱莲说里以菊正面衬托莲,以牡丹反面衬托莲,用意是什么?
- 6已知关于x的方程x2+(m-2)x+2m+1=0的两根均大于大于-1,则实数m的取值范围
- 7The most important reason for animals______is the part that humans have ____.
- 8渔歌子 张志和 关于“不须归”的原因
- 9雄兔脚扑朔,雄兔眼迷离.
- 10解不等式2(1-3x)>3x+20,并把它的解在数轴上表示出来.
热门考点