当前位置: > 求z=3xy-x^3-y*^3的极值...
题目
求z=3xy-x^3-y*^3的极值

提问时间:2020-11-08

答案
z'(x)=3y-3x^2、z'(y)=3x-3y^2
z'(xx)=-6x、z'(xy)=3、z'(yy)=-6y
令z'(x)=3y-3x^2=0、z'(y)=3x-3y^2=0,则x=0、y=0或x=1、y=1
驻点为:(0,0)和(1,1).
若(0,0),则A=0、B=3、C=0,B^2-AC=9>0,所以(0,0)不是极值点.
若(1,1),则A=-6、B=3、C=-6,B^2-AC=9-12=-3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.