题目
分数找规律
[1] 1/1 ,2/1 ,1/2 ,3/1 ,2/2 ,1/3 ,4/1 ,( ) ,( ) ,( ).
[2] 1/1 ,7/8 ,5/6 ,13/16 ,( ) ,( ).
[1] 1/1 ,2/1 ,1/2 ,3/1 ,2/2 ,1/3 ,4/1 ,( ) ,( ) ,( ).
[2] 1/1 ,7/8 ,5/6 ,13/16 ,( ) ,( ).
提问时间:2020-11-08
答案
[1] 1/1 ,2/1 ,1/2 ,3/1 ,2/2 ,1/3 ,4/1 ,( 3/2 ) ,( 2/3 ) ,( 1/4 ).
观察一下会发现这个数列的分布是这样的,把它们划分成组看比较容易——
分母是每一组从小到大排列的:(1),(1,2),(1,2,3),(1,2,3,4).(1,.,n)
而分子则是在每一组中从大到小顺序排列:(1),(2,1),(3,2,1),(4,3,2,1).(n,...,1)
进一步会发现,每一组里,分子与分母的和是相同的.比方说第一组的和是2,第二组和是3,第三组的和是4,以此类推.
[2] 1/1 ,7/8 ,5/6 ,13/16 ,( 4/5 ) ,( 19/24 ).
1/1,7/8,5/6,13/16,4/5,19/24可以变形为:
4/4,7/8,10/12,13/16,16/20,19/24,
分子+3
分母+4
观察一下会发现这个数列的分布是这样的,把它们划分成组看比较容易——
分母是每一组从小到大排列的:(1),(1,2),(1,2,3),(1,2,3,4).(1,.,n)
而分子则是在每一组中从大到小顺序排列:(1),(2,1),(3,2,1),(4,3,2,1).(n,...,1)
进一步会发现,每一组里,分子与分母的和是相同的.比方说第一组的和是2,第二组和是3,第三组的和是4,以此类推.
[2] 1/1 ,7/8 ,5/6 ,13/16 ,( 4/5 ) ,( 19/24 ).
1/1,7/8,5/6,13/16,4/5,19/24可以变形为:
4/4,7/8,10/12,13/16,16/20,19/24,
分子+3
分母+4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1形容高兴,满足,神气十足的样子的成语
- 2.已知m为正实数求与圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0中每个圆都相切的圆的方程.
- 3能翻译pdf里英文翻译成中文 地软件
- 4同一类原子是指多个原子还是一个原子?
- 5一篇高一水的英语作文,
- 6极坐标系下,直线p cos(Θ-Ω/4)=√2与圆p=2的公共点个数是
- 71/1*2+1/2*3+1/3*4+.+1/199*200
- 8根据“翠竹绿树红花,小桥流水人家.夕阳西下,载着欢笑理想.”依据此诗展开合理想象,写500字叙述文,畅谈理想,不过处处要根据诗意.
- 9哪个函数的导数是 1/(3+x²)
- 10若a分之b=2,求分式a+ab-b分之a-2ab+2b的值