题目
(1)如图甲,在△ABC中,AB=AC,∠BAC=90°,P是BC中点,点F是AC上任意一点(不与A,C重合),E是AB上一点,且PE⊥PF,连结EF.求证:BE²+CF²=EF².
(2)如图乙,在△ABC中,AB≠AC,∠BAC=90°,P是BC中点,点F是AC上任意一点(不与A,C重合),E是AB上一点,且PE⊥PF,连结EF.试判断结论BE²+CF²=EF²是否仍成立,并说明理由.
(2)如图乙,在△ABC中,AB≠AC,∠BAC=90°,P是BC中点,点F是AC上任意一点(不与A,C重合),E是AB上一点,且PE⊥PF,连结EF.试判断结论BE²+CF²=EF²是否仍成立,并说明理由.
提问时间:2020-11-07
答案
证明:延长FP,使PG=FP,连接BG ,EG
因为点P是BC的中点
所以BP=CP
因为角BPG=角CPF
所以三角形BPG和三角形CPG全等(SAS)
所以BG=CF
角GBP=角C
所以BG平行AC
所以角BAC+角GBE=180度
因为角BAC=90度
所以角GBE=90度
由勾股定理得:
GE^2=BG^2+BE^2
所以GE^2=BE^2+CF^2
因为PE垂直EF
所以角EPG=角EPF=90度
因为PE=PE
所以三角形EPG和三角形EPF全等(SAS)
所以GE=EF
所以BE^2+CF^2=EF^2
(2)结论BE^2+CF^2=EF^2仍然成立
证明同(1)
因为点P是BC的中点
所以BP=CP
因为角BPG=角CPF
所以三角形BPG和三角形CPG全等(SAS)
所以BG=CF
角GBP=角C
所以BG平行AC
所以角BAC+角GBE=180度
因为角BAC=90度
所以角GBE=90度
由勾股定理得:
GE^2=BG^2+BE^2
所以GE^2=BE^2+CF^2
因为PE垂直EF
所以角EPG=角EPF=90度
因为PE=PE
所以三角形EPG和三角形EPF全等(SAS)
所以GE=EF
所以BE^2+CF^2=EF^2
(2)结论BE^2+CF^2=EF^2仍然成立
证明同(1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1抛物线y=-3(x-1)2+5的顶点坐标为_.
- 2在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则C等于( ) A.30° B.150° C.30°或150° D.60°或120°
- 3I want to said :I afraid your left!I want give you together!___to my
- 4世界助残日是什么时
- 5(75+900)除以60等于多少列竖试
- 6anything与something的区别
- 7问一个物理题:一物体静止在光滑水平面上,先对物体施一水平向右的恒力F1,经t秒后撤去F1,立即再对它...
- 8光滑水平面上水平放置一弹簧AB,A端固定,B端受到1N的拉力时弹簧伸长5cm.现在在B点系一个质量为100g的小球,并使弹簧伸长10cm,放手后让其做简谐运动.它的振幅多大?振动中加速度的最
- 9( )÷5=6:10=( )分之15=( ) (填小数)=( )百分之
- 10填空:( )( )the white one?