当前位置: > 在四边形ABCD中.∠ABC=30°∠ADC=60°AD=CD证明BD²=AB²+BC²...
题目
在四边形ABCD中.∠ABC=30°∠ADC=60°AD=CD证明BD²=AB²+BC²

提问时间:2020-11-06

答案
以BD为边长作正△BDE,使点A、
点E分别在BD的两侧,连结EC、AC
∵AD=CD,∠ADC=60°
∴△ACD是正三角形
∴∠ADB=60°-∠BDC=∠CDE
∴△ABD≌△CED
∴AB=CE,∠BAD=∠ECD
∴∠BCE
=360°-(∠BCD+∠ECD)
=360°-(360°-∠ABD-∠ADC)
=∠ABD+∠ADC=90°
∴BE^2=BC^2+CE^2
∴BD^2=BC^2+AB^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.