题目
已知4阶矩阵A=(α1 α2 α3 α4)的列向量组中,α1 α2 α4线性无关,α3=2α1+α2-2α4,
且β=α1+α2+2α3-2α4,求非齐次方程组AX=β的通解.
且β=α1+α2+2α3-2α4,求非齐次方程组AX=β的通解.
提问时间:2020-11-06
答案
因为 β=α1+α2+2α3-2α4
所以 (1,1,2,-2)^T 是非齐次方程组AX=β的特解
因为 α1 α2 α4线性无关,α3=2α1+α2-2α4,
所以 r(A)=3, Ax=0 的基础解系含 4-3=1 个向量
且 (2,1,-2,-1)^T 是 Ax=0 的基础解系
所以 AX=β 的通解为 (1,1,2,-2)^T + c(2,1,-2,-1)^T.
所以 (1,1,2,-2)^T 是非齐次方程组AX=β的特解
因为 α1 α2 α4线性无关,α3=2α1+α2-2α4,
所以 r(A)=3, Ax=0 的基础解系含 4-3=1 个向量
且 (2,1,-2,-1)^T 是 Ax=0 的基础解系
所以 AX=β 的通解为 (1,1,2,-2)^T + c(2,1,-2,-1)^T.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1庞太师与杨家将、包青天
- 2怎么算一个数的立方根
- 3at the weekend 是什么时态的时间状语
- 4一件商品价格为x,打8折销售比降价25元销售商家获利要多,则x应满足的关系式
- 5小梅家到学校距离2.4千米,一天上学走到一半路程时,离到校还有12分钟,问他走完剩下的一半路程的平均速度
- 6已知三角形ABC中,AB²=AB*AC+BA*BC+CA*CB,则三角形ABC是 三角形
- 710X-8.9=5X+1.
- 8关于三角形两边之和大于第三边的问题
- 9.游泳池里男孩戴蓝帽,女孩戴红帽,一个男孩说:“我看见的蓝帽与红帽一样多”;
- 10水果店运进香蕉一百框梨的框数是香蕉的五分之三与苹果的框数之比是四比三运进苹果多少框
热门考点
- 1已知a^2+a+1=0,求a^1980+a^1981+……a^2006的值.
- 2如图,在平行四边形ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F. 求证:AB=BF.
- 31/2+1/4+1/8+1/16+1/32+1/64.
- 4一道除式,商是22,余数是6,被除数与除数的和是259,这道除式的除数是_,被除数是_.
- 5硫与16克铜反应生成硫化亚铜电子转移数求解析
- 6设a>0,b>0,c>0,若(a+b+c)[1/a + 1/(b+c)]≥k恒成立,k的最大值是?
- 7求与云淡风轻,意境相关的诗词.
- 8读一本书,第一天读了全书的3分之1,第一天比第三天多读24页,第二,第三天比是5比3,这本书多少页
- 9吸引怎么造句?
- 10这个岗位的工作职责是什么?英语怎么说?