当前位置: > 设P为等边三角形ABC所在平面内的一点,满足向量CP=向量CB+2向量CA.若AB=1,则向量PA...
题目
设P为等边三角形ABC所在平面内的一点,满足向量CP=向量CB+2向量CA.若AB=1,则向量PA

提问时间:2020-11-06

答案
因为CP=向量CB+2向量CA,画出图像,P点在以BC和2AC为边得平行四边形的一顶点上,延长CA到D,使得2AC=CD,因为A为CD中点,所以2向量PA=向量PD+向量PC,而向量PD=向量BC,代入后得2向量PA=向量BC+向量BC+2向量AC,化简
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.