当前位置: > 求不定积分(X*arctanX)/(1+X^2)^(1/2)dx的详解...
题目
求不定积分(X*arctanX)/(1+X^2)^(1/2)dx的详解

提问时间:2020-11-05

答案
∫[arctan(X*arctanX)/(1+X^2)^(1/2)dx 非三角部分放进去
=∫arctanxd(1+X^2)^(1/2) 分部积分做
=arctanx*(1+X^2)^(1/2) - ∫(1+X^2)^(1/2) darctanx 打开三角部分
=arctanx*(1+X^2)^(1/2) - ∫1/[(1+X^2)^(1/2)] dx 最后套公式
=arctanx*(1+X^2)^(1/2) - ln|x+(1+X^2)^(1/2)|+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.