当前位置: > 有关矩阵的证明题...
题目
有关矩阵的证明题
“证明对任意的n阶方阵A,存在一个对称矩阵B及一个反对称矩阵C,使得A=B+C,且这种分解是惟一的.”其中的那个“且这种分解是惟一的”怎么证明?

提问时间:2020-11-03

答案
唯一性:
若有两种形式
即 A = B + C B对称 C反对称
A = F + G F对称 G反对称
所以有 A'代表A转置
A' = B' + C' = B - C
A' = F' + G' = F - G
由上有
F + G = B + C
F - G = B - C
两式相加有 2F=2B,F=B
再进一步得到 G = C
所以得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.