当前位置: > 利用k^(k+1)>(k+1)^k (k≥3)证明:...
题目
利用k^(k+1)>(k+1)^k (k≥3)证明:
(k+1)^(k+2)>(k+2)^(k+1)
次数太高,无法化简,望高手赐教,

提问时间:2020-11-03

答案
这种类型的题通常用取对数来降次证明:∵k^(k+1)>(k+1)^k∴(k+1)lnk>kln(k+1)∴k[lnk-ln(k+1)]+lnk>0∴kln[k/(k+1)]+lnk>0 .(1)又(k+1)^2=k+2k+1>k+2k=k(k+2)∴(k+1)/(k+2)>k/(k+1)∴ln[(k+1)/(k+2)]>ln[k/(k+1)]....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.