当前位置: > 证明如果n姐是对称矩阵A满足A^3+3A=36E,则A=3E.结合矩阵特征值及相似对角化的特点....
题目
证明如果n姐是对称矩阵A满足A^3+3A=36E,则A=3E.结合矩阵特征值及相似对角化的特点.

提问时间:2020-11-03

答案
设λ是A的特征值
则 a^3+3a-36 是 A^3+3A-36E 的特征值
因为A^3+3A-36E=0
所以 a^3+3a-36=0
即 (a-3)(a^2+3a+12)=0
因为A是实对称矩阵,其特征值都是实数
所以a=3.
所以3是A的n重特征值
再由A是实对称矩阵,A可对角化,即存在可逆矩阵P满足 P^-1AP=diag(3,3,...,3)=3E
所以 A = P(3E)P^-1 = 3E.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.