题目
设函数f(x)=lnx+x^2-2ax+a^2,a∈R
设函数f(x)=lnx+x^2-2ax+a^2,a∈R(1)若函数在【1/2,2】上单调递增,求实数a取值范围 (2)求函数f(x)极值点
设函数f(x)=lnx+x^2-2ax+a^2,a∈R(1)若函数在【1/2,2】上单调递增,求实数a取值范围 (2)求函数f(x)极值点
提问时间:2020-11-03
答案
(1)
定义域x > 0
f'(x) = 1/x + 2x - 2a = (2x² - 2ax + 1)/x = 0
2x² - 2ax + 1 = 0
判别式∆ = 4a² - 8
(i) ∆ ≤ 0,a² ≤ 2
2x² - 2ax + 1为开口向上的抛物线,与x轴最多有一个公共点,在定义域内f'(x) ≥ 0,f(x)在[1/2,2]上单调递增
(ii) ∆ > 0,a² > 2
2x² - 2ax + 1为开口向上的抛物线,与x轴有2个公共点
x₁ = [a - √(a² - 2)]/2,x₂ = [a + √(a² - 2)]/2
若f(x)函数在[1/2,2]上单调递增,只须x₁ = [a - √(a² - 2)]/2 > 1或 x₂ = [a + √(a² - 2)]/2
x₁ = [a - √(a² - 2)]/2 > 1,a - √(a² - 2) > 2
a - 2 > √(a² - 2) ( 须a - 2 > 0才有意义)
a² - 4a + 4 > a² - 2
a < 3/2
与a - 2 > 0矛盾,舍去
x₂ = [a + √(a² - 2)]/2 < 1/2
a + √(a² - 2) < 1
√(a² - 2) < 1 - a ( 须1 - a > 0才有意义)
a² - 2 < a² - 2a + 1
2a < 3,a < 3/2
结合前提1 - a > 0得a < 1
再结合大前提a² > 2,得a < -√2
结合(i)(ii):a ≤ √2
(2)
(i) a² ≤ 2时无极值点
(ii) a² > 2
x₁ = [a - √(a² - 2)]/2,x₂ = [a + √(a² - 2)]/2
f(x₁)为极大值,f(x₂)为极小值
f(x₁) = ln[a - √(a² - 2)] - ln2 + [a + √(a² - 2)]²/4 = lnx₁ + x₂²
f(x₂) = ln[a + √(a² - 2)] - ln2 + [a - √(a² - 2)]²/4 = lnx₂ + x₁²
定义域x > 0
f'(x) = 1/x + 2x - 2a = (2x² - 2ax + 1)/x = 0
2x² - 2ax + 1 = 0
判别式∆ = 4a² - 8
(i) ∆ ≤ 0,a² ≤ 2
2x² - 2ax + 1为开口向上的抛物线,与x轴最多有一个公共点,在定义域内f'(x) ≥ 0,f(x)在[1/2,2]上单调递增
(ii) ∆ > 0,a² > 2
2x² - 2ax + 1为开口向上的抛物线,与x轴有2个公共点
x₁ = [a - √(a² - 2)]/2,x₂ = [a + √(a² - 2)]/2
若f(x)函数在[1/2,2]上单调递增,只须x₁ = [a - √(a² - 2)]/2 > 1或 x₂ = [a + √(a² - 2)]/2
x₁ = [a - √(a² - 2)]/2 > 1,a - √(a² - 2) > 2
a - 2 > √(a² - 2) ( 须a - 2 > 0才有意义)
a² - 4a + 4 > a² - 2
a < 3/2
与a - 2 > 0矛盾,舍去
x₂ = [a + √(a² - 2)]/2 < 1/2
a + √(a² - 2) < 1
√(a² - 2) < 1 - a ( 须1 - a > 0才有意义)
a² - 2 < a² - 2a + 1
2a < 3,a < 3/2
结合前提1 - a > 0得a < 1
再结合大前提a² > 2,得a < -√2
结合(i)(ii):a ≤ √2
(2)
(i) a² ≤ 2时无极值点
(ii) a² > 2
x₁ = [a - √(a² - 2)]/2,x₂ = [a + √(a² - 2)]/2
f(x₁)为极大值,f(x₂)为极小值
f(x₁) = ln[a - √(a² - 2)] - ln2 + [a + √(a² - 2)]²/4 = lnx₁ + x₂²
f(x₂) = ln[a + √(a² - 2)] - ln2 + [a - √(a² - 2)]²/4 = lnx₂ + x₁²
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1这句话对吗?
- 2小红看一本故事书,第一星期看了45页,第二星期看了全书的1/4,第二星期比第一星期少看20%,这本书共有多少页?
- 3英语翻译:无论发生什么,你都应该坚持你的梦想
- 4What is our granddaughter doing? She_(listen) to music.
- 5人和动物之间信赖的故事
- 6PLGA 50:50 的分子量12 kD,53 kD,143 kD中的kD是什么意思
- 7肝细胞的核糖体上形
- 8用水平力拉,拉着滑块沿半径R的水平圆轨道运动一周,已知物块与轨道间动摩擦因数为u,物块质量为M 求此过
- 9图,△ABC为等边三角形,AE=CD,AD、BE相交与点P,BQ垂直于AP与Q 求证:∠PBQ=30°
- 10初中解三元一次方程组除了消元法,还有其他的吗?
热门考点
- 1这几个数加起来等于多少啊 141+165+144+171+145+.=
- 2高中化学中以通电为反应条件的化学反应
- 3苏教五年级上册语文
- 4若(a+b)²=1(a-b)²=25求a²+b²,ab
- 5请问 you can limit can not be empty 这句话正确吗?
- 6_____ is orange.
- 7Tom is going to Lodon(换句表达,意不变)
- 8求《A happy memory in my Junior High School》英语作文,
- 9某建筑工地上有m吨水泥,每天用去3.5吨,用了a天,剩下 吨水泥.如果m=50,a=8,那么剩下 吨
- 10形容兄弟,或者说朋友变了,不在是以前的他,应该用什么词语,或句子,诗句形容?