当前位置: > 三角形ABC中,D为边BC上一点 BD=33,sinB=5/13,cos角ADC=3/5 求AD...
题目
三角形ABC中,D为边BC上一点 BD=33,sinB=5/13,cos角ADC=3/5 求AD
不过有几点要纠正的D点永远在BC上,
情况1:
角B是锐角时 角ADC有锐角和钝角两种情况。
情况2:
角B是钝角时,角ADC是钝角!

提问时间:2020-11-03

答案
根据∠B分两种情况:
⑴当∠B为锐角时,点D在BC之间,此时cos∠B=12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠ADC-∠B)
=sin∠ADCcos∠B-cos∠ADCsin∠B
=33/65
根据正弦定理AD/sin∠B=BD/sin∠BAD 得AD=25
⑵当∠B为钝角时,点D在BC之外,此时cos∠B=-12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠B-∠ADC)
=-sin(∠ADC-∠B)
=-sin∠ADCcos∠B+cos∠ADCsin∠B
=63/65
根据正弦定理AD/sin(π-∠B)=BD/sin∠BAD 得AD=13.
所以AD=25,或者AD=13.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.