当前位置: > 设A为n阶矩阵,x为n维向量,则...
题目
设A为n阶矩阵,x为n维向量,则
A^TAx=0的解必是AX=0的解?
若AX=0有解时A^TAX=0也有解,则A必可逆?

提问时间:2020-11-03

答案
1.A是实矩阵时正确
x 满足 A^TAx=0,则 x^TA^TAx=0,即有 (Ax)^T(Ax)=0,故有 Ax=0
2.不对.
不管A是否可逆,Ax=0时,(等式两边左乘A^T) 都有 A^TAx=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.