题目
已知x为锐角,sinx=3/5,则tan(x-派/4)=
提问时间:2020-11-02
答案
cosx=±√[1-(sinx)^2] =±4/5
∵x为锐角
∴cosx=4/5
tanx=sinx/cosx=3/4
tan[x- (π/4)] = [tanx - tan(π/4)]/[1+tanxtan(π/4)] = (tanx-1)/(1+tanx) = (-1/4)/(7/4) =-1/7
∵x为锐角
∴cosx=4/5
tanx=sinx/cosx=3/4
tan[x- (π/4)] = [tanx - tan(π/4)]/[1+tanxtan(π/4)] = (tanx-1)/(1+tanx) = (-1/4)/(7/4) =-1/7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点