题目
已知数列An 满足A1=1,且4An+1-AnAn+1+2An=9
已知数列An 满足A1=1,且4An+1-AnAn+1+2An=9
猜想An的通向公式 并用数学归纳法证明
已知数列An 满足A1=1,且4An+1-AnAn+1+2An=9
猜想An的通向公式 并用数学归纳法证明
提问时间:2020-11-02
答案
∵数列{a[n]}满足4a[n+1]-a[n]a[n+1]+2a[n]=9
∴(4-a[n])a[n+1]=9-2a[n]
即:a[n+1]=(2a[n]-9)/(a[n]-4)
∵a[1]=1
∴a[2]=7/3,a[3]=13/5,a[4]=19/7,...
∵分子是首项为1,公差为6的等差数列
∴猜想分子是:1+6(n-1)=6n-5
∵分母是首项为1,公差为2的等差数列
∴猜想分母是:1+2(n-1)=2n-1
∴猜想{a[n]}的通项公式是:a[n]=(6n-5)/(2n-1)
下面用数学归纳法来证明上述猜想公式成立:
当n=1时,左边=a[1]=1,右边=(6*1-5)/(2*1-1)=1,此时公式成立
设n=k时公式成立,即:a[k]=(6k-5)/(2k-1)
∵a[n+1]=(2a[n]-9)/(a[n]-4)
∴当n=k+1时,a[k+1]=(2a[k]-9)/(a[k]-4)
=[2(6k-5)/(2k-1)-9]/[(6k-5)/(2k-1)-4]
=[(-6k-1)/(2k-1)]/[(-2k-1)/(2k-1)]
=(6k+1)/(2k+1)
=[6(k+1)-5]/[2(k+1)-1],公式也成立
∴{a[n]}的通项公式:a[n]=(6n-5)/(2n-1)的猜想是正确的
再用不动点法给予验证:
∵a[n+1]=(2a[n]-9)/(a[n]-4)
令:x=(2x-9)/(x-4)
x^2-4x=2x-9
即:(x-3)^2=0
解得不动点:x=3
∴a[n+1]-3=(2a[n]-9/(a[n]-4)-3=(-a[n]+3)/(a[n]-4)
取倒数:1/(a[n+1]-3)=(4-a[n])/(a[n]-3)=1/(a[n]-3)-1
即:1/(a[n+1]-3)-1/(a[n]-3)=-1
∵a[1]=1
∴{1/(a[n]-3)}是首项为1/(a[1]-3)=-1/2,公差为-1的等差数列
即:1/(a[n]-3)=-1/2-(n-1)=(1-2n)/2
∴a[n]=2/(1-2n)+3=(5-6n)/(1-2n)=(6n-5)/(2n-1)
验证结果:猜想、数学归纳法、不动点法所得的{a[n]}通项公式完全一致
a[n]=(6n-5)/(2n-1)
∴(4-a[n])a[n+1]=9-2a[n]
即:a[n+1]=(2a[n]-9)/(a[n]-4)
∵a[1]=1
∴a[2]=7/3,a[3]=13/5,a[4]=19/7,...
∵分子是首项为1,公差为6的等差数列
∴猜想分子是:1+6(n-1)=6n-5
∵分母是首项为1,公差为2的等差数列
∴猜想分母是:1+2(n-1)=2n-1
∴猜想{a[n]}的通项公式是:a[n]=(6n-5)/(2n-1)
下面用数学归纳法来证明上述猜想公式成立:
当n=1时,左边=a[1]=1,右边=(6*1-5)/(2*1-1)=1,此时公式成立
设n=k时公式成立,即:a[k]=(6k-5)/(2k-1)
∵a[n+1]=(2a[n]-9)/(a[n]-4)
∴当n=k+1时,a[k+1]=(2a[k]-9)/(a[k]-4)
=[2(6k-5)/(2k-1)-9]/[(6k-5)/(2k-1)-4]
=[(-6k-1)/(2k-1)]/[(-2k-1)/(2k-1)]
=(6k+1)/(2k+1)
=[6(k+1)-5]/[2(k+1)-1],公式也成立
∴{a[n]}的通项公式:a[n]=(6n-5)/(2n-1)的猜想是正确的
再用不动点法给予验证:
∵a[n+1]=(2a[n]-9)/(a[n]-4)
令:x=(2x-9)/(x-4)
x^2-4x=2x-9
即:(x-3)^2=0
解得不动点:x=3
∴a[n+1]-3=(2a[n]-9/(a[n]-4)-3=(-a[n]+3)/(a[n]-4)
取倒数:1/(a[n+1]-3)=(4-a[n])/(a[n]-3)=1/(a[n]-3)-1
即:1/(a[n+1]-3)-1/(a[n]-3)=-1
∵a[1]=1
∴{1/(a[n]-3)}是首项为1/(a[1]-3)=-1/2,公差为-1的等差数列
即:1/(a[n]-3)=-1/2-(n-1)=(1-2n)/2
∴a[n]=2/(1-2n)+3=(5-6n)/(1-2n)=(6n-5)/(2n-1)
验证结果:猜想、数学归纳法、不动点法所得的{a[n]}通项公式完全一致
a[n]=(6n-5)/(2n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1为什么幂函数图像不可能出现在第四象限?
- 2如果式子2x+3的值与1/5互为倒数,那么x的值是?
- 3线段的大小关系与线段长度的长度关系式一致的?怎么理解这句话
- 4如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为( ) A.43 B.35 C.34 D.45
- 5一件商品按打八折出售,仍然能获得20%.这件商品定价时期的利润是多少?
- 6一水桶内结满了冰,且冰面恰好与桶口相平,此时冰与桶的总质量为22kg,当冰完全融化后,需要向桶内倒入2L
- 7请教孟加拉信用证条款
- 8按照所给汉语意思完成句子,单数不限
- 9选用一句是或对联来概括下面两文体现出来的共同意思.
- 10在一次人才招聘会上,有A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年
热门考点
- 1轩榭,败笔,丘壑,明艳,
- 29.6-11/7+10分之1*4
- 3滴定液销酸银标液是如何配制的?
- 4甲乙两个班的人数相等,已知甲班男生人数是乙班女生人数的五分之一,乙班男生人数是甲班女生人数的八分之一
- 5They can play the violin.(改为一般疑问句)
- 6我的叔叔于勒父亲我不敢肯定父亲对于这个计划是不是进行了商谈“我不敢肯定“是什么意思
- 7金属、非金属、酸性氧化物、碱性氧化物、酸、碱、盐之间的反应关系以及反应类型
- 8my mother likes staying at home and ------- soap operas when she is free A.playing B.acting
- 9饲养场有白兔和黑兔共240只,其中黑兔是白兔的1/5.黑兔、白兔各多少只?
- 10“已知被减数、减数与差之和为592,其中减数比差的2倍还多2,求减数.