题目
判别式和韦达定理
方程的根与解的区别和联系.根的判别式·韦达定理及简单应用·2次3项式分解因式
方程的根与解的区别和联系.根的判别式·韦达定理及简单应用·2次3项式分解因式
提问时间:2020-11-02
答案
8月3日 19:52 韦达定理,即一元二次方程的根与系数关系定理
ax^2+bx+c=0的两个根分别为x1,x2
则x1+x2=-b/a,x1*x2=c/a
内容分析
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 ,
(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,
x1x2=q
(3)以x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1x2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是1,x2,那么ax2+bx+c=a(x-x1)(x-x2).
实例:已知x^2-2x-3=0的两根x1,x2,求x1平方+x2平方
解法一:求得方程2根为-1和3,所以 x1平方+x2平方=10
解法二:不解方程直接用韦达定理,x1平方+x2平方=(x1+x2)^2-2x1*x2=4+6=10
如果方程不容易解的话,韦达定理的优势就体现出来了.
ax^2+bx+c=0的两个根分别为x1,x2
则x1+x2=-b/a,x1*x2=c/a
内容分析
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 ,
(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,
x1x2=q
(3)以x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1x2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是1,x2,那么ax2+bx+c=a(x-x1)(x-x2).
实例:已知x^2-2x-3=0的两根x1,x2,求x1平方+x2平方
解法一:求得方程2根为-1和3,所以 x1平方+x2平方=10
解法二:不解方程直接用韦达定理,x1平方+x2平方=(x1+x2)^2-2x1*x2=4+6=10
如果方程不容易解的话,韦达定理的优势就体现出来了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1英语翻译
- 2在一个底面直径是10厘米,高18厘米的圆柱形瓶内装买水,现将瓶内的水倒入一个底面直径是12厘米,高10厘米的圆柱形玻璃杯内,能否装下?若装满了,那么瓶内水面还有多高?若没装满,球杯内水面积被扣的距离?
- 3如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.
- 4用什么方法可以把水分离成H和O
- 50.78乘98的脱式计算,简便算法
- 6定义两种运算a○b=根号下a²-b² a●b=根号下(a-b)²函数4○x/(x●2)-2为奇函
- 7北师大版小学语文六年级下册第二单元第一课《长城赞》全文及解释
- 88上科学密度题目`
- 9给出下列几个函数:①y=x²-1 (x<-2)②y=x³-1 (x∈R)③y=x(2-x) (x≥½)④y=2x(x≥2),
- 10关于考英语一级证书的内容有那些