当前位置: > 数学证明题(数学归纳法)...
题目
数学证明题(数学归纳法)
证明
n为自然数,3^(3n)-26n-1可以被676整除

提问时间:2020-11-02

答案
n=1
3^(3n)-26n-1
=27-26-1=0
可以被676整除
设n=k时
3^(3k)-26k-1可以被676整除
则n=k+1时
3^3(k+1)-26(k+1)-1
=3^(3k+3)-26k-27
=3^3*3^(3k)-26k-27
=27*3^(3k)-26k-27
=27*3^(3k)-702k-27+676k
=27*[3^(3k)-26k-1]+676k
因为3^(3k)-26k-1可以被676整除,676k可以被676整除
所以27*[3^(3k)-26k-1]+676k可以被676整除,
所以n=k+1时3^3(k+1)-26(k+1)-1可以被676整除,
所以n为自然数,3^(3n)-26n-1可以被676整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.