当前位置: > 求由方程x^2+xy+y^2=4所确定的曲线上点(2.0)处的切线方程....
题目
求由方程x^2+xy+y^2=4所确定的曲线上点(2.0)处的切线方程.

提问时间:2020-11-02

答案
x^2+xy+y^2=4
全微分,所以
2xdx+xdy+ydx+2ydy=0
(2x+y)dx+(x+2y)dy=0
dy/dx=-(2x+y)/(x+2y)
将(2,0)代入可得,dy/dx=-4/2=-2
切线方程就是y=-2x+4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.