题目
如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
提问时间:2020-11-02
答案
(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点
∴∠BAD=∠DAC=∠B=∠C=45°
∴AD=BD=DC (2分)
∵AE=CF∴△AED≌△CFD(SAS)
(2)依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9
∴S△EDF=S四边形AEDF−S△AEF=9−
(6−x)x=
x2−3x+9
∴y=
x2−3x+9;
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°
∴△ADF≌△BDE
∴S△ADF=S△BDE
∴S△EDF=S△EAF+S△ADB
=
(x−6)x+9=
x2−3x+9
∴y=
x2−3x+9.
∴∠BAD=∠DAC=∠B=∠C=45°
∴AD=BD=DC (2分)
∵AE=CF∴△AED≌△CFD(SAS)
(2)依题意有:FC=AE=x,
∵△AED≌△CFD
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9
∴S△EDF=S四边形AEDF−S△AEF=9−
1 |
2 |
1 |
2 |
∴y=
1 |
2 |
(3)依题意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°
∴△ADF≌△BDE
∴S△ADF=S△BDE
∴S△EDF=S△EAF+S△ADB
=
1 |
2 |
1 |
2 |
∴y=
1 |
2 |
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1课改版小学数学四年级上册第五单元试卷
- 2直线l1:y=kx+3k-2与l2:x+4y-4=0的交点在第一象限,则R的取值范围是 请写出祥细过程,
- 3Buses leave Dorchester Station for St.Marks20 minutes before and after every hour from 6:20am until
- 4直线y=1/2x+1与y轴相交于点A,将直线A点逆时针旋转90°,则旋转后所得直线的解析式为
- 5已知sin(π-a)-cos(π+a)=根号2/3,(π/2小于a小于π)求sina-cosa的值
- 6对于任意锐角a,是否都有cos^2a+sin^2a=1?请说明理由.
- 7课文《月光曲》的第九自然段中联想的句子能否去掉?为什么?
- 8什么杠杆平衡原理
- 9哪一历史事件使中国革命面貌焕然一新
- 10有关爱国的格言和诗句?
热门考点