当前位置: > 在三角形ABC中,延长AC边上的中线BD到F,使DF=BD,延长AB边上的中线CE至G,使EG=CE,求证:AF=AG...
题目
在三角形ABC中,延长AC边上的中线BD到F,使DF=BD,延长AB边上的中线CE至G,使EG=CE,求证:AF=AG

提问时间:2020-11-01

答案
1.三角形AGE和三角形BCE中,
AE=BE(CE是AB的中线)
CE=EG(已知)
角AEG=角BEC(对顶角相等)
根据边角边可以证出三角形AGE 全等于三角形BEC.
这样可知,AG=BC(全等三角形对应边相等)
2.同理,三角形ADF全等于三角形BDC,
这样,AF=BC.
3.因为AG=BC
AF=BC
所以AG=AF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.