题目
有什么函数是不可积的?函数不可积说明了什么?
提问时间:2020-11-01
答案
正态分布函数的密度函数是不可积的,虽然它的原函数(即不定积分)存在,但不能用初等函数表达出来.
习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数,但是这些积分在概率论,数论,光学,傅里叶分析等领域起着重要作用.
(1)∫e^(-x²)dx;(2)∫(sinx)/xdx;
(3)∫1/(lnx)dx;(3)∫sinx²dx;
(5)∫根号(a²sin²x+b²cos²x)dx(a²≠b²)
标准正态分布函数:Φ(x)=[1/根号(2π)]∫(-∞,x)e^(-x²/2)dx
这个函数是不可积的,但是它的原函数是存在的,只是不能用初等函数表示而已.习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数 ∫e^(-x*x)dx,∫(sinx)/xdx,∫1/(lnx)dx,∫sin(x*x)dx ∫(a*a*sinx*sinx+b*b*cosx*cosx)^(1/2)dx(a*a不等于b*b) -------------------------------------- 以下是从别人那粘贴过来的..原函数我也不知道,___________________________________ 下面证明∫sint/tdt=π/2(积分上限为∞,下限为0) 因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分.I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0) 显然:I(0)=∫sint/tdt(积分上限为∞,下限为0) I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0) =∫e^(-xt)sin(t)sint(积分上限为∞,下限为0) =e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0) =-1/(1+x^2) 从而有 I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1) |I(x)|=|∫e^(-xt)sint/tdt| ≤∫|e^(-xt)sint/t|dt ≤∫e^(-xt)dt =-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0) =1/x -->0 (x-->+∞) 即lim(I(x))-->0 (x-->+∞) 对(1)式两端取极限:lim(I(x))(x-->+∞) =-lim(-arctan(x)+C ) (x-->+∞)
=-π/2+C 即有0=-π/2+C,可得C=π/2 于是(1)式为 I(x)=-arctan(x)+π/2 limI(x)=lim(-arctan(x)+π/2) (x-->0) I(0)=π/2 所以有 I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2 因为sinx/x是偶函数,所以 ∫sint/tdt(积分上限为∞,下限为-∞) =π .
习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数,但是这些积分在概率论,数论,光学,傅里叶分析等领域起着重要作用.
(1)∫e^(-x²)dx;(2)∫(sinx)/xdx;
(3)∫1/(lnx)dx;(3)∫sinx²dx;
(5)∫根号(a²sin²x+b²cos²x)dx(a²≠b²)
标准正态分布函数:Φ(x)=[1/根号(2π)]∫(-∞,x)e^(-x²/2)dx
这个函数是不可积的,但是它的原函数是存在的,只是不能用初等函数表示而已.习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数 ∫e^(-x*x)dx,∫(sinx)/xdx,∫1/(lnx)dx,∫sin(x*x)dx ∫(a*a*sinx*sinx+b*b*cosx*cosx)^(1/2)dx(a*a不等于b*b) -------------------------------------- 以下是从别人那粘贴过来的..原函数我也不知道,___________________________________ 下面证明∫sint/tdt=π/2(积分上限为∞,下限为0) 因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分.I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0) 显然:I(0)=∫sint/tdt(积分上限为∞,下限为0) I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0) =∫e^(-xt)sin(t)sint(积分上限为∞,下限为0) =e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0) =-1/(1+x^2) 从而有 I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1) |I(x)|=|∫e^(-xt)sint/tdt| ≤∫|e^(-xt)sint/t|dt ≤∫e^(-xt)dt =-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0) =1/x -->0 (x-->+∞) 即lim(I(x))-->0 (x-->+∞) 对(1)式两端取极限:lim(I(x))(x-->+∞) =-lim(-arctan(x)+C ) (x-->+∞)
=-π/2+C 即有0=-π/2+C,可得C=π/2 于是(1)式为 I(x)=-arctan(x)+π/2 limI(x)=lim(-arctan(x)+π/2) (x-->0) I(0)=π/2 所以有 I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2 因为sinx/x是偶函数,所以 ∫sint/tdt(积分上限为∞,下限为-∞) =π .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1质量为5×103 kg的汽车在t=0时刻速度v0=0,随后以6×104 W的额定功率沿平直公路前进,设汽车受恒定阻力,其大小为2.5×103N.求: (1)汽车的最大速度vm; (2)汽车速度达到6m
- 2初二作文Life In the city,
- 3museums in beijing are on the move
- 4如何巧算:(42×15+42-42×8)×125
- 5比9多8的数是多少()
- 6设a=(1+cosa,sina),b=(1+cosβ,sinβ),a属于(0.π),β属于(π,2π),c=
- 7地球上的生物(物种起源)起源于哪里?
- 8想一想下面的文字各代表几? 欢迎奥运会 * 4 ————— 会运奥迎欢
- 9要得到y=3sin2x-cos2x的图象,可将函数y=4sinxcosx的图象( ) A.向左平行移动π12个单位长度 B.向右平行移动π12个单位长度 C.向左平行移动π6个单位长度 D.向右平行
- 1011点前务必答出!)
热门考点
- 1那些药是从海洋里的生物中提取的
- 2举个氧化反应引入羟基的例子
- 3果园里共有120棵桃树和梨树.桃树的棵树是梨树的3倍.梨树的棵树是桃树的3分之1.两种数共有多少棵?
- 4when you to cease dream you cease to live
- 5两个相邻奇数的和是16,它们的最大公约数是_,最小公倍数是_.
- 6Maybe you are right.( )you are right.同义句转换
- 7以饭桌上的谈话写一篇作文
- 8爱国诗人的古诗句.要写作者的啊!
- 9根据以下句子意思,写出所指动物的英文单词.they do not have legs but they can move fast.they can ope
- 10如何计算年销售增长率?