题目
已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.
提问时间:2020-11-01
答案
解(1)f′(x)=3ax2+2bx+c.
由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18.(3分)
又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,
所以-1和3必是f′(x)=0的两个根.
从而
解得
(5分)
又根据f(0)=-7,所以f(x)=2x3-6x2-18x-7(7分)
(2)f′(x)=3ax2+2bx+c由条件b2-3ac<0可知a≠0,c≠0.(9分)
因为f'(x)为二次三项式,
并且△=(2b)2-4(3ac)=4(b2-3ac)<0,
所以,当a>0时,f'(x)>0恒成立,此时函数f(x)是单调递增函数;
当a<0时,f'(x)<0恒成立,此时函数f(x)是单调递减函数.
因此,对任意给定的实数a,函数f(x)总是单调函数.(12分)
由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18.(3分)
又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,
所以-1和3必是f′(x)=0的两个根.
从而
|
|
又根据f(0)=-7,所以f(x)=2x3-6x2-18x-7(7分)
(2)f′(x)=3ax2+2bx+c由条件b2-3ac<0可知a≠0,c≠0.(9分)
因为f'(x)为二次三项式,
并且△=(2b)2-4(3ac)=4(b2-3ac)<0,
所以,当a>0时,f'(x)>0恒成立,此时函数f(x)是单调递增函数;
当a<0时,f'(x)<0恒成立,此时函数f(x)是单调递减函数.
因此,对任意给定的实数a,函数f(x)总是单调函数.(12分)
(1)因为函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,则导数在区间(-∞,-1)和(3,+∞)上都大于零,在区间(-1,3)上小于零,可知,-1和3对应的导数值为0,再由f′(0)=-18,可求得导函数,再利用导函数与原函数间的关系,表示出原函数,再由f(0)=-7求解.
(2)若函数f(x)是单调函数,则导函数对应的方程无根即可,所以下面就转化为导数是恒大于零还是恒小于零问题求解.
(2)若函数f(x)是单调函数,则导函数对应的方程无根即可,所以下面就转化为导数是恒大于零还是恒小于零问题求解.
利用导数研究函数的单调性;函数解析式的求解及常用方法.
本题主要考查函数的单调性与导数正负间的关系,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1today does not walk,wiil have to run tomorrow
- 2sin²A=
- 3北极熊白色体毛下厚厚的脂肪属于什么组织
- 41,2,3,…,98共98个自然数中,能够表示成两整数的平方差的个数是 _ .
- 5elevate 和 promote 的区别
- 6一个正方体玻璃缸的棱长为4分米,先把它装满水,再把这些水全部倒入一个底面积为20平方分米的长方体水槽中.槽里的水面高多少分米?
- 7单独行动,声势浩大,地势平坦带马的成语
- 8我在去电影院的途中看到一个男孩在修自行车.汉译英
- 9集合A={x|x=3n+1,n∈Z},B={y|y=3m-2;m∈Z}集合A与集合B的关系
- 10组成原理习题求解
热门考点
- 1下列各组物质,相互不能发生反应的是( ) A.氢氧化钠溶液和硫酸 B.氧化铁和盐酸 C.三氧化硫和氢氧化钠 D.盐酸和二氧化碳
- 2某种“15选5”的彩票的获奖概率
- 3新年畅想为题的作文
- 4什么是危险物品
- 5998乘以1002-998乘以1001
- 6若关于x,y的二元一次方程ax+by-8=0的解为{x=2 y=3,和{x=4 y=5,求3a-2b的值
- 7为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买了多少瓶?
- 8谁给分析一下这句英文倒装句的结构
- 920分之()=3.5/()=0.35=()%=80分之1*()
- 10甲数是35,乙数是45甲数比乙数少几分之几?要完整算式过程~