当前位置: > 已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数. (1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)...
题目
已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.

提问时间:2020-11-01

答案
解(1)f′(x)=3ax2+2bx+c.
由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18.(3分)
又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,
所以-1和3必是f′(x)=0的两个根.
从而
3a−2b−18=0
27a+6b−18=0.
解得
a=2
b=−6.
(5分)
又根据f(0)=-7,所以f(x)=2x3-6x2-18x-7(7分)
(2)f′(x)=3ax2+2bx+c由条件b2-3ac<0可知a≠0,c≠0.(9分)
因为f'(x)为二次三项式,
并且△=(2b)2-4(3ac)=4(b2-3ac)<0,
所以,当a>0时,f'(x)>0恒成立,此时函数f(x)是单调递增函数;
当a<0时,f'(x)<0恒成立,此时函数f(x)是单调递减函数.
因此,对任意给定的实数a,函数f(x)总是单调函数.(12分)
(1)因为函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,则导数在区间(-∞,-1)和(3,+∞)上都大于零,在区间(-1,3)上小于零,可知,-1和3对应的导数值为0,再由f′(0)=-18,可求得导函数,再利用导函数与原函数间的关系,表示出原函数,再由f(0)=-7求解.
(2)若函数f(x)是单调函数,则导函数对应的方程无根即可,所以下面就转化为导数是恒大于零还是恒小于零问题求解.

利用导数研究函数的单调性;函数解析式的求解及常用方法.

本题主要考查函数的单调性与导数正负间的关系,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.