当前位置: > A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1...
题目
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

提问时间:2020-10-31

答案
A^2+A-4E=O
A^2+A=4E
A(A+E)=4E
A(A+E)/4=E
因此,A可逆,且A^-1=(A+E)/4
A^2+A-4E=O
A^2+A-2E=2E
(A-E)(A+2E)=2E
(A-E)(A+2E)/2=E
因此,A-E可逆,且(A-E)^-1=(A+2E)/
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.