当前位置: > 过抛物线y^2=4x上一点P作圆M:(x-3)^2+y^2=1的两条切线,切点为A、B,当四边形PAMB的面积最小时,直线AB的方程...
题目
过抛物线y^2=4x上一点P作圆M:(x-3)^2+y^2=1的两条切线,切点为A、B,当四边形PAMB的面积最小时,直线AB的方程
答案是2x+2y-5=0或2x-2y-5=0

提问时间:2020-10-31

答案
MA⊥AP MB⊥BP PA=PB所以SPAMB=1/2*PA*MA+1/2*PB*MB=1/2*2*1*PA=PA所以就是求PA的最小值而PA^2=PM^2-MA^2=PM^2-1也就是求PM^2的最小值设P(x,y)PM^2=(x-3)^2+y^2=(x-3)^2+4x=x^2-2x+9=(x-1)^2+8在x=1时最小此时P(1,2)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.