题目
证明:实数域上一切有逆得n*n矩阵对于矩阵乘法来说,作成一个群
提问时间:2020-10-31
答案
我们令所有可逆n*n矩阵组成的集合为M,我们知道,M是非空的且矩阵乘法是一个二元运算.若M在矩阵乘法下成一个群,则因满足群的四个性质,现一一证明.
(1)单位矩阵I是可逆的,是M中元素,且对于任意矩阵A∈M,有IA=AI=A,即单位元素存在.
(2)对于任意一个矩阵A∈M,存在逆矩阵A^(-1),使得A*A^(-1)=I,即逆元素存在.
(3)矩阵乘法满足结合律,即对任意的矩阵A,B,C∈M,满足(A*B)*C=A*(B*C)
(4)对于任意的矩阵A,B∈M,有(A*B)*(B^(-1)*A^(-1))=A*(B*B^(-1))*A^(-1)=A*I*A^(-1)=I,即A*B是可逆的,所以有A*B∈M,即矩阵乘法元算是乘法封闭的.
总上,M在矩阵乘法下是一个群.
(1)单位矩阵I是可逆的,是M中元素,且对于任意矩阵A∈M,有IA=AI=A,即单位元素存在.
(2)对于任意一个矩阵A∈M,存在逆矩阵A^(-1),使得A*A^(-1)=I,即逆元素存在.
(3)矩阵乘法满足结合律,即对任意的矩阵A,B,C∈M,满足(A*B)*C=A*(B*C)
(4)对于任意的矩阵A,B∈M,有(A*B)*(B^(-1)*A^(-1))=A*(B*B^(-1))*A^(-1)=A*I*A^(-1)=I,即A*B是可逆的,所以有A*B∈M,即矩阵乘法元算是乘法封闭的.
总上,M在矩阵乘法下是一个群.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1烽火连三月,家书抵万金.海内存知已,天涯若比邻.无为在歧路,儿女共沾巾.这首诗的作者是谁,
- 2请你谈谈对文章题目《种植春天》的理解.
- 31.填空 is( )(a/an)teacher.My mother is a teacher( )(too/two).I like( )(watch/watching)TV.
- 4急用!弹簧秤下挂一个金属块,当金属块浸没在水中,静止时,弹簧秤的示数为它在空气中读数
- 5说出下列函数的定义域,值域:(1)正比例函数y=3x(2)反比例函数y=8/x 数y=-4x+5
- 6阅读短文,回答问题。 _ 天刚蒙蒙亮□麻雀就在我家窗前的树上叽叽喳喳地叫起来□□叽叽叽□喳喳喳□天亮了□起来吧□□噢□叫我起床哪□我连忙翻身下床□穿好衣服□ 我轻轻
- 7油罐车怎样算体积
- 8为什么说并非所有的生物全部生命活动都离不开ATP
- 9初二地理中秦岭淮河都是哪些分界线?
- 10英语翻译