当前位置: > 求证:无论M取什么实数,抛物线y=x^+(m-5)x+m-8与x轴总有两个交点...
题目
求证:无论M取什么实数,抛物线y=x^+(m-5)x+m-8与x轴总有两个交点

提问时间:2020-10-31

答案
证明:因为函数y=x^+(m-5)x+m-8的判别式为△,
即△=b^2-4ac
=(m-5)^2-4(m-8)
=m^2-10m+25-4m+32
=m^2-14m+57
=(m-7)^2+8>0
所以无论M取什么实数,抛物线y=x^+(m-5)x+m-8与x轴总有两个交点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.