当前位置: > 在锐角三角形ABC中,sin(A+B)=(3/5),sin(A-B)=(1/5),求证tanA=2tanB...
题目
在锐角三角形ABC中,sin(A+B)=(3/5),sin(A-B)=(1/5),求证tanA=2tanB

提问时间:2020-10-31

答案
sin(A+B)=sinAcosB+sinBcosA=3/5 ;sin(A-B)=sinAcosB-sinBcosA=1/5
所以:sinAcosB=2/5(上面两式相加再除2) ,sinBcosA=1/5(上面两式相减再除2).两个再相除:tanA*cotB=2.则:tanA/tanB=2.
所以:tanA=2tanB
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.