当前位置: > 设H、K都是群G的子群,设|H|=m,|K|=n且(m,n)=1,证明:H∩K={e}.如题...
题目
设H、K都是群G的子群,设|H|=m,|K|=n且(m,n)=1,证明:H∩K={e}.如题

提问时间:2020-10-31

答案
证明:显见{e}包含于H∩K,H∩K≠Φ.任意的a,b∈H∩K,则a,b∈H且a,b∈K,又H、K为G的子群,故a(b^-1)∈H且a(b^-1)∈K.即 a(b^-1)∈H∩K,故H∩K≤H,H∩K≤K.从而由拉格朗日定理知 |H∩K| 整除m且 |H∩K|整除n 因此|H∩K|整除(m,n),又(m,n)=1,故必有 |H∩K|=1,所以 H∩K={e}
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.