题目
三角函数的积化和差公式是什么,怎么推导出来的.
提问时间:2020-10-31
答案
http://baike.baidu.com/view/383748.htm?fr=ala0_1正弦、余弦的和差化积
指高中数学三角函数部分的一组恒等式
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设 α+β=θ,α-β=φ
那么
α=(θ+φ)/2, β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin(θ+φ)/2 cos(θ-φ)/2
[编辑本段]正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
指高中数学三角函数部分的一组恒等式
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设 α+β=θ,α-β=φ
那么
α=(θ+φ)/2, β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin(θ+φ)/2 cos(θ-φ)/2
[编辑本段]正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1两个弹簧振子,甲的固有频率是100Hz,乙的固有频率是400Hz.若它们均在频率是300Hz的驱动力作用下受迫振动,则( ) A.甲的振幅较大,振动频率是100Hz B.乙的振幅较大,振动频率是30
- 2与恋恋不舍了成语有那些
- 3有一块平行四边形的菜地,底是24米,高是12.5米,在这快地里收到蔬菜4500千克
- 4有一个两位数,其中十位上的数字比个位上的数字小2,如果这个两位数大于20而小于40,求这个两位数.
- 5拘谨不自然,不放松是有什么相应词语
- 6不锈钢为什么还要做钝化处理?什么是钝化处理?
- 7----all the animals i have ever had ,those two dogs are the most sensitive to the spoken word
- 8填关联词 ( )看电视,( )难以想象中国扑火队在利威特灭火的情景
- 9填适当的关联词
- 10改变其中一个字母使它变成另一个单词