题目
已知函数f(x)=2acos^2x+bsinxcosx-根号3/2,且f(0)=根号3/2,f(pai/4)=1/2
1.求f(x)的最小正周期
2.求f(x)的单调递减区间
3.函数f(x)的图像经过怎样的平移才能使图像对应的函数变为奇函数
1.求f(x)的最小正周期
2.求f(x)的单调递减区间
3.函数f(x)的图像经过怎样的平移才能使图像对应的函数变为奇函数
提问时间:2020-10-30
答案
1、f(x)的最小正周期为2π/2=π
2、令2kπ-π/2≤2x+π/3≤2kπ+π/2,以求f(x)的单调增区间,得
kπ-5π/12≤x≤kπ+π/12,(k∈Z)
令2kπ+π/2≤2x+π/3≤2kπ+3π/2,以求f(x)的单调减区间,得
kπ+π/12≤x≤kπ+7π/12,(k∈Z)
3、f(x)=sin(2x+π/3)对应的奇函数为±sin2x
f(x)=sin(2x+π/3)= sin[2(x+π/6)]
f(x)向左平移π/3得f(x+π/3)=sin[2(x+π/3+π/6)]= -sin2x,是奇函数.
继续向左平移周期的整数倍,得f(x+π/3+kπ)=sin[2(x+π/3+kπ+π/6)]= -sin2x,仍是奇函数.
f(x)向右平移π/6得f(x-π/6)=sin[2(x-π/6+π/6)]=sin2x,是奇函数.
继续向右平移周期的整数倍,得f(x-π/6-kπ)=sin[2(x-π/6-kπ+π/6)]=sin2x,仍是奇函数.
综上所述,
f(x)向左kπ+π/3,或向右平移kπ-π/6,(k∈Z),仍是奇函数.
2、令2kπ-π/2≤2x+π/3≤2kπ+π/2,以求f(x)的单调增区间,得
kπ-5π/12≤x≤kπ+π/12,(k∈Z)
令2kπ+π/2≤2x+π/3≤2kπ+3π/2,以求f(x)的单调减区间,得
kπ+π/12≤x≤kπ+7π/12,(k∈Z)
3、f(x)=sin(2x+π/3)对应的奇函数为±sin2x
f(x)=sin(2x+π/3)= sin[2(x+π/6)]
f(x)向左平移π/3得f(x+π/3)=sin[2(x+π/3+π/6)]= -sin2x,是奇函数.
继续向左平移周期的整数倍,得f(x+π/3+kπ)=sin[2(x+π/3+kπ+π/6)]= -sin2x,仍是奇函数.
f(x)向右平移π/6得f(x-π/6)=sin[2(x-π/6+π/6)]=sin2x,是奇函数.
继续向右平移周期的整数倍,得f(x-π/6-kπ)=sin[2(x-π/6-kπ+π/6)]=sin2x,仍是奇函数.
综上所述,
f(x)向左kπ+π/3,或向右平移kπ-π/6,(k∈Z),仍是奇函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1四棱锥P一ABCD中,底面ABCD为直角梯形,AB∥CD,∠CDA=90度,PD⊥面ABCD,AB=AD=PD=1,cD=2,E为PC中点.证明:...
- 2矩阵等价,矩阵相似,矩阵合同的区别与联系
- 3三峡大坝具体是怎么处理这么长河道淤泥的?
- 4the virtues of growing older 课文翻译
- 5一道证明周期函数题
- 6两个字一样组成一个字 , 比如 :林 喆 .
- 7美国所跨的纬度,大部分都在( ) A.热带 B.北温带 C.南温带 D.亚热带
- 82,3,5的倍数特征是什么,他是怎样推导的,9的倍数特征是什么?(举例说明)
- 9《茅屋为秋风所破歌》中推己及人的句子
- 10已知多项式2x^2+my-12与多项式nx^2-3y+6差中不含有x,y.求m+n+mn的值