当前位置: > 题是这样的:证明:如果a为正整数,那么多项式a的三次方-a一定能被6整除....
题目
题是这样的:证明:如果a为正整数,那么多项式a的三次方-a一定能被6整除.
我提公因式分解,得a{a+1}{a-1},也就是三个连续的正整数相乘,我就是不明白为什么一定能被6整除吖
下边还有一个变式联系:若a为整数,则a的平方+a一定能被那一个数整除?我填的2,

提问时间:2020-10-30

答案
a{a+1}{a-1},三个连续的正整数,一定有一个是3的倍数,一定有偶数(2的倍数),所以能被6(2x3)整除.
a^2+a=a(a+1)两个连续的整数中一定有一个偶数,所以能被2整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.