当前位置: > 在四棱锥p-ABCD中pD垂直ABCD,AD垂直于CD,DB平分角ADC,E为PC中点证明:1PA平行面BDE...
题目
在四棱锥p-ABCD中pD垂直ABCD,AD垂直于CD,DB平分角ADC,E为PC中点证明:1PA平行面BDE
2.证明AC垂直于平面PBD 3.求直线BC与平面PBD所成的角的正切值
E为PC的中点还有一个条件 AD=CD=1,DB等于二倍根二

提问时间:2020-10-30

答案
证明:1.连接AC叫DB与哦,连接OE,因为DB平分角ADC且AD垂直于CD所以OA=OC ,因为E为PC中点,所以OE为三角形PAC的中位线,所以OE//PA因为OE属于平面BDE所以PA//平面BDE2.PD⊥面ABCD则AC ⊥PD 又BD(DO)为ADC角平分线,AD=CD...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.