当前位置: > 求圆心在X+Y+3=0上,且过点A(6,0),B(1,5)的圆的方程...
题目
求圆心在X+Y+3=0上,且过点A(6,0),B(1,5)的圆的方程

提问时间:2020-10-30

答案
因为圆心在X+Y+3=0上
所以设圆心为(x,-x-3),半径为r
由圆过点A(6,0),B(1,5)
可得:r^2=(x-6)^2+(-x-3-0)^2=(x-1)^2+(-x-3-5)^2
x^2-12x+36+x^2+6x+9=x^2-2x+1+x^2+16x+64
20x=-20
解得x=-1
所以圆心(-1,-2)
r^2=(x-6)^2+(-x-3-0)^2=53
则方程为:(x+1)^2+(x+2)^2=53
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.