当前位置: > 证明:若pk>o(k=1,2,……)(p是下标)且 lim[pn/p1+p2+……+pn]=0,liman=a(都是n→∝)...
题目
证明:若pk>o(k=1,2,……)(p是下标)且 lim[pn/p1+p2+……+pn]=0,liman=a(都是n→∝)
证明:若pk>o(k=1,2,……)(p是下标)且
lim[pn/p1+p2+……+pn]=0,liman=a(都是n→∝)
则 lim{[p1an+p2a(n-1)+……+pna1]/p1+p2+……pn}=a.(极限是n→∝)
(注:1,2,……(n-1),n是下标)

提问时间:2020-10-30

答案
把你要求极限的那个式子减去a,|p1an+p2a(n-1)+……+pna1]/(p1+p2+……pn)-a|<=
p1|(an-a)|+p2(|a(n-1)-a|)+……+pn(|a1-a|)]/(p1+p2+……pn)由前面给出的两个极限,可知任给ε,存在K,k大于K时,pn/p1+p2+……+pn<ε,|an-a|<ε.那么当n>2K+2时,把上面那个式子分成两部分,前半段由an的下标大于n/2-1的构成,后半部分由pn的下标大于n/2-1的构成,这样两部分之后将不小于原来的式子,对于第一部分,用|an-a|<ε来估计,对于第二部分,考虑到an是有界性,|an-a|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.