当前位置: > 设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)...
题目
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)求函数f(x)的单调递减区间,(2)已知a,b,c是三角形ABC的三边,且b^2=ac.若f(B)=根号3,求B的值
还有,

提问时间:2020-10-27

答案
设函数f(x)=msinx+根号2cosx,(m为常数,且m>0),已知函数f(x)的最大值为2,(1)求函数f(x)的单调递减区间,(2)已知a,b,c是三角形ABC的三边,且b^2=ac.若f(B)=根号3,求B的值
(1)解析:∵函数f(x)=msinx+√2cosx,(m为常数,且m>0)
∴f(x)=msinx+√2cosx=√(m^2+2)[m/√(m^2+2)*sinx+√2/√(m^2+2)*cosx]
令cosθ= m/√(m^2+2),sinθ=√2/√(m^2+2)
∴f(x)=√(m^2+2)sin(x+θ)
∵函数f(x)的最大值为2==>√(m^2+2)=2==>m=√2==>θ=π/4
∴f(x)=2sin(x+π/4)
∴函数f(x)的单调递减区间为[2kπ+π/4,2kπ+5π/4]
(2)解析:∵a,b,c是三角形ABC的三边,且b^2=ac,f(B)= √3
∴f(B)=2sin(B+π/4)= √3==> sin(B+π/4)=√3/2==>B=π/3-π/4=π/12
或B=2π/3-π/4=5π/12
∵b^2=ac
∴cosB=(a^2+c^2-b^2)/(2ac)=(a^2+c^2)/(2ac)-1/2
∵a^2+c^22ac/(2ac)-1/2=1/2==>即B大于π/3
∴B=5π/12
开方就是求一个正数的平方根的运算
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.