当前位置: > 已知点G是三角形ABC重心,若角A=120度,向量AB×向量AC=-2,则|向量AG|的最小值为?...
题目
已知点G是三角形ABC重心,若角A=120度,向量AB×向量AC=-2,则|向量AG|的最小值为?
已知点G是三角形ABC重心
AG=1/3(AB+AC)
若角A=120度,向量ABX向量AC=-2
向量ABX向量AC=-2=|AB|*|AC|*cosA=-1/2|AB|*|AC|
|AB|*|AC|=4
|AG|^2=1/9[|AB|^2+2|AB|*|AC|*cosA+|AC|^2]
=1/9[|AB|^2+|AC|^2-|AB|*|AC|]
由均值不等式得
|AG|^2=1/9[|AB|^2+|AC|^2-|AB|*|AC|]>=1/9(2|AB|*|AC|-|AB|*|AC|)=4/9
AG=2/3
这种方法解答,但是一开始不是求出AB×AC的值了
为什么不可以开始的时候用
AB乘AC=4
均值不等式2根号下ab≤a+b
求出AB+AC的最小值=中线的两倍
AG=2/3中线
答案我算了不一样啊.
为什么不可以这样做呢= =.

提问时间:2020-10-26

答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.